Parietal cortex involvement in the localization of tactile and noxious mechanical stimuli: a transcranial magnetic stimulation study.
نویسندگان
چکیده
The cortical system underlying perceptual ability to localize tactile and noxious cutaneous stimuli in humans is still incompletely understood. We used transcranial magnetic stimulation (TMS) to transiently interfere with the function of the parietal cortex, at different times after the beginning of noxious or non-noxious mechanical stimulation of the hairy skin overlying the dorsal surface of the first metacarpal of the contralateral hand. Peripheral stimuli consisted of rounded (1mm diameter) or sharp (0.2 mm) metal tips; skin contact lasted on average 242 ms (noxious) and 228 ms (non-noxious). Brief (80 ms, 25 Hz) TMS trains, given at 150 ms after the onset of cutaneous stimulation, significantly impaired subjects' ability in localizing non-nociceptive, tactile input, an effect which was not observed when TMS was applied at 300 ms after cutaneous stimulation. In contrast, brief TMS trains given at 300 ms after the onset of cutaneous stimulation significantly impaired subjects' ability in localizing nociceptive input, an effect which was not observed when TMS was applied at 150 ms after cutaneous stimulation. No impairment in stimulus detection was found in comparison with control sham TMS. The timing of parietal TMS interference with the ability to localize tactile and painful stimuli is compatible with known time differences in the arrival of non-noxious and noxious information in the postcentral gyrus. On these grounds, our findings support the existence of overlapping cortical populations in the contralateral parietal lobe, exerting a role in spatial discriminative aspects of touch and mechanically induced pain.
منابع مشابه
MEDIAN NERVE STIMULATION PO TENTIATES THE MU SCLE RESPONSES TO TRANS C RANIAL MAGNETIC STIMULATION
Motor responses evoked by transcranial magnetic stimulation OMS) or transcranial electrical stimulation (TCS) can be facilitated by a prior conditioning stimulus to an afferent nerve. Two facilitation periods are described short (SI), when the nerve stimulus is given near 0 to 10 ms after cranial stimulation, and long (LI), when nerve stimulation is given 25-60 ms before the cranial stimula...
متن کاملPaired transcranial magnetic stimulation protocols reveal a pattern of inhibition and facilitation in the human parietal cortex.
Intracortical inhibition (ICI) and facilitation (ICF) of the human motor cortex can be induced by paired transcranial magnetic stimulation (TMS). Although demonstrated in experimental animals, the existence of intracortical inhibitory and excitatory circuits in parietal sensory cortex has not been documented in humans. The aim of this study was to investigate the effects of paired TMS of the pa...
متن کاملTime-dependent activation of parieto-frontal networks for directing attention to tactile space. A study with paired transcranial magnetic stimulation pulses in right-brain-damaged patients with extinction.
Tactile extinction has been interpreted as an attentional disorder, closely related to hemineglect, due to hyperactivation of the unaffected hemisphere, resulting in an ipsilesional attentional bias. Paired transcranial magnetic stimulation (TMS) techniques, with a subthreshold conditioning stimulus (CS) followed at various interstimulus intervals (ISIs) by a suprathreshold test stimulus (TS), ...
متن کاملSafety and Therapeutic Effects of Repetitive Transcranial Magnetic Stimulation and Behavior Therapy in a Pregnant Woman: Case Report
In this study, the authors reported a case of woman with severe compulsion who became pregnant during the Repetitive transcranial magnetic stimulation. We carried out Repetitive transcranial magnetic stimulation and behavior therapy simultaneously after repeated medications' refraction. The patient received 20 sessions 1 Hz Repetitive transcranial magnetic stimulation in right dorsolateral pref...
متن کاملInvolvement of human primary somatosensory cortex in vibrotactile detection depends on task demand
UNLABELLED Detecting and discriminating sensory stimuli are fundamental functions of the nervous system. Electrophysiological and lesion studies suggest that macaque primary somatosensory cortex (SI) is critically involved in discriminating between stimuli, but is not required simply for detecting stimuli. By contrast, transcranial magnetic stimulation (TMS) studies in humans have shown near-co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Behavioural brain research
دوره 178 2 شماره
صفحات -
تاریخ انتشار 2007